Как найти площадь любого треугольника по трём сторонам

Содержание:

Как посчитать площадь комнаты в квадратных метрах

Необходимость в расчете площади возникает зачастую только во время ремонтных работ, строительства или при смене мебели. Практически все строительные материалы (например напольное покрытие) исчисляется в квадратных метрах

Для правильного расчета количества материала, важно знать площадь пола. Зная ширину и длину комнаты, найти площадь не вызовет никаких сложностей

Измерения

Перед тем как измерить комнату в квадратных метрах, необходим минимальный набор предметов:

На бумаге необходимо сделать подробный план помещения. Каждая стена должна быть измерена с использованием рулетки.

Внимание! Очень важно делать измерения на уровне пола, ведь бывают случаи (особенно в старых домах), когда стены немного завалены в одну из сторон. Так как происходит измерение пола, необходимо измерять с максимальным прилеганием к стенам

Вторым этапом является проставление полученных измерений на плане. Лучше всего сразу делать это в метрах, но точность каждого замера должна быть до 1 сантиметра. Это необходимо для того, чтобы при выборе необходимого количества материалов, удалось максимально точно подобрать метраж требуемого материала. Рулонные напольные покрытия продаются в погонных метрах.

Округлять можно только в случае небольшого увеличения, чтобы в случае непредвиденных обстоятельство, было достаточное количество материала.

Как высчитать квадратуру комнаты

Чтобы понять, как узнать общую площадь комнаты, необходимо воспользоваться простой формулой и перемножить показания длины на ширину. Как показано на рисунке длинная стена имеет длину в 7 метров а противоположная только 4. Выходит площадь пола будет равна 28 м2. Именно таким образом и находят квадратуру. Обязательно требуется помнить о небольшом запасе, который потребуется для подгонки и подрезки, причем чем сложнее будет вариант укладки, тем больше потребуется брать запас.

Зачастую комнаты не имеют ровной квадратной или прямоугольной формы.Поэтому, перед тем как узнать площадь комнаты в квадратных метрах, необходимо просто разбить комнату на несколько простых фигур (квадраты и прямоугольники) и после считают общую квадратуру. Так например для комнаты у которой форма буквы Г, достаточно разбить ее на 2 прямоугольника, отдельно посчитать площадь, а потом сложить.

Выглядит это все следующим образом:

  • вычисляем квадратуру большого прямоугольника: 5 умножаем на 4,35 и получаем 21,75 квадратных метров;
  • теперь по тому же принципу второй: 2,5 на 2,65 и получаем 6,625 квадратов;
  • далее суммируем общий результат 6,625 + 21,75 и получаем площадь комнаты в размере 28,375 квадратных метров.

Имея на руках полученный точный результат, можно немного округлить его в большую сторону и учитывать 28,4 квадратных метра.

В том случае, если комната имеет участок со срезанной стеной, как показано на картинке, тогда необходимо нарисовать прямоугольник таким образом, чтобы косая делила его на 2 треугольника. Тогда опять получается помещение по форме буквы Г. Далее можно вычислить площадь, по выше представленному методу.

Необходимо будет найти площадь трех прямоугольников. Недостающий участок – половина маленького прямоугольника. Достаточно будет просто найти его площадь и разделить на 2, после чего прибавить к остальным размерам.

Итак, для примера можно использовать следующие данные:

  • большой прямоугольник: 1,75 м *1,93 м = 3,3775 м². Чтобы было проще, возьмем 3,38 м²;
  • средний прямоугольник: 1,18 м * 0,57 м = 0,6726 м². Опять произведем округление до 0,67 м²;
  • самый маленький прямоугольник: 0,57 м *0,57 м = 0,3249 м2, доводим до 0,33 м²;
  • теперь осталось только сложить получившиеся значения и прибавить ½ маленького прямоугольника: 3,38 + 0,67 +0,33/2 = 3,38 + 0,67 +0,17 = 4,22 м².

Это наиболее удобная методика, которой может воспользоваться любой желающий. Достаточно только разбивать сложную фигуру на несколько простых. Несмотря на то, что измерений будет больше, такой метод не требует больших усилий и временных потерь, а все вычисления можно сделать буквально на коленке.

Как подготовиться к расчетам

Проведение подготовительных манипуляций заключается в подготовке места для измерений. Также необходимо подготовить инструмент и специальные принадлежности. Лучше если комната будет свободной от посторонних предметов. Часто такое случается при замерах в новом доме или во время проведения ремонта. Замеры длины сторон производятся вдоль стенок. При этом нужно освободить хотя-бы участки, для свободного проведения рулеткой. Результаты замеров можно сразу же перенести на схему. Обязательно следует проверить прямоугольности комнаты. Для этого выполняется замер диагональных линий.

Особенности замеров с учетом линий коммуникаций

Кроме рулетки вам может понадобиться специальная линейка для проверки прямых линий. Это может быть строительный уровень или правило. Иногда необходим строительный угольник больших размеров. Как вариант, самодельный циркуль. Можно использовать кусок шнура, привязанный к острому штырю. Для пола можно использовать специальные принадлежности для замеров. Для этого подойдет маркер, мел или скотч. Замеры выполняйте несколько раз. Это позволит избежать ошибки. Следите, чтобы лента для проведения замеров не провисала. Помните, что на многие измерительные инструменты наносится две шкалы. Нельзя путать метрическую систему и дюймовую.

Лазерное приспособление заметно облегчает работу

Перед замерами набросайте простой план – схему на бумаге. Это позволит правильно распределить все замеры. Стоит учитывать, что многие формулы расчетов очень сложные. В этом случае посчитать в столбик не получится. Чтобы посчитать без ошибок, можно воспользоваться программой Excel.

На схеме показаны все необходимые замеры для правильных расчетов

Калькулятор площади треугольника по трем сторонам

Как известно, треугольником принято называть плоскую геометрическую фигуру, многоугольник, который ограничен минимальным количеством сторон. Также, стоит помнить, что всякий многоугольник делится на определённое количество треугольников.

Для этого необходимо соединить его вершины такими отрезками, которые не пересекали бы его стороны. Вот почему, зная как рассчитать площадь треугольника, Вы можете получить площадь большинства геометрических фигур.

Формула Герона для вычисления площади треугольника по трем сторонам

В том случае если нам известны параметры каждой стороны нашего треугольника, мы можем рассчитать площадь фигуры по формуле Герона. Для её упрощения следует применить новую величину, так называемый полупериметр, который является суммой всех сторон треугольника, которая разделена пополам.

После получения значения полупериметра, Вы можете приступать к расчёту площади по руководствуясь следующей формулой: S = sqrt(p(p-a)(p-b)(p-c)), в которой «p» – полупериметр, «a,b,c» – стороны фигуры и sqrt –квадратный корень.

Пример вычисления площади треугольника по трем сторонам

Рассмотрим на примере вычисление площади треугольника по формуле Герона.

p = (a + b + c)/ 2  где p – половина периметра треугольника.

таким образом S = √ p ( p – a ) ( p – b ) ( p – c ) .

(Это также называется формулой Герона)

Дано:

Треугольник со сторонами a = 4, b = 5, c = 3.

Задание:Найдите площадь треугольника

Решение:

Используйте формулу половинного периметра:

p = (3 + 4 + 5)/ 2= 6

Полученные значения подставляем в формулу Герони:

S = √ 6 ( 6 – 3 ) ( 6 – 4 ) ( 6 – 5 ) =

√ 6 ⋅ 3 ⋅ 2 ⋅ 1 = √ 36 =6

Ответ: 6

Историческая справка

Формула приписывается Герону, живущему в  Александрии, который был греческим инженером и математиком в 10 – 70 годах нашей эры

Среди прочего, он разработал  первый известный паровой двигатель, но его рассматривали как игрушку!

Вычисления с помощью окружностей

На практике используются способы расчета площади треугольника с помощью вписанной или описанной окружности. В первом случае необходимо знать величины всех сторон и радиус вписанного элемента. Далее:

  • найдите полупериметр (p);
  • умножьте полученную величину на значение радиуса (r) окружности и получите площадь.

Совет. При неизвестном радиусе его рассчитывают по формуле: r = P/2π. P — длина окружности, π — математическая константа.

По описанной вокруг треугольника окружности также можно вычислить его площадь. Потребуется знать радиус:

  • получите произведение всех сторон треугольника;
  • умножьте радиус на 4;
  • разделите первое значение на второе.

Важно! Формула:

Пример для треугольника со сторонами 3,4 и 5 см. Если описать окружность, касающуюся каждой его вершины, то ее радиус будет равняться 2,5. После подстановки величин в уравнение получите итоговое значение 6 см2.

Предложенный набор методов — базовый, но вовсе не исчерпывающий. Существуют более сложные способы решения задания с меньшим количеством вводных данных и многоступенчатым расчетом.

Основание трапеции

Рассмотрим, как правильно рассчитать площадь трапеции. Трапеция представляет собой четырехсторонний многоугольник с одной парой параллельных сторон. Если две непараллельные стороны имеют одинаковую длину, форма называется равнобедренной или обычной трапецией. Если непараллельные стороны имеют разную длину, она называется неравнобедренной. Однако, несмотря на эту дополнительную сложность в определении, площадь неправильной трапеции может быть рассчитана с помощью простой формулы.

Измерения для расчета площади трапеции:

  1. Выровнять прямой край транспортира вдоль более короткой из двух параллельных сторон.
  2. Использовать транспортир, чтобы провести линию перпендикулярно от основания трапеции вплоть до противоположной параллельной стороны.
  3. Измерить расстояние высоты с помощью линейки.
  4. Измерить длину более короткой параллельной стороны.
  5. Измерить длину более длинной параллельной стороны.
  6. Чтобы найти площадь трапеции, предварительно нужно вычислить среднюю величину двух ее параллельных сторон: (a+b)/2.
  7. Площадь равнобедренной (или любой) трапеции равна произведению средней длины основания и вершины на высоту.
  8. Площадь трапеции: S=1/2×h×(a + b).

Нужно обратить внимание, что высота трапеции всегда перпендикулярна основанию, точно так же, как высота параллелограмма. Пример: a=3 см, b=5 см, h=4 см

S=4х(3+5)/2=16.

Ответ: 16 см2.

Вычисляем метраж

Основные этапы работы:

  1. Расчет производится вдоль стен комнаты. Поэтому предварительно рекомендуется освободить их. Для этого нет необходимости полностью освобождать комнату. Во многих случаях достаточно лишь отодвинуть предметы к центру помещения.
  2. Измерение значения длины стены. Для этого понадобится рулетка. Ее прикладывают к углу одной из стен и закрепляют. Ведя рулетку вдоль стены до ее конца, находят значение длины.
  3. Полученное значение следует записать на листе бумаги.
  4. Таким же образом необходимо найти длину второй стены.
  5. Полученные в результате измерения данные следует умножить между собой. Для этого можно воспользоваться калькулятором.

Найденные данные и являются метражом комнаты.

Чтобы найти площадь комнаты, не обязательно прибегать к услугам специалистов. Процедура достаточно проста и вполне доступна каждому. Следуя предложенным рекомендациям, можно без особых усилий и в короткие сроки получить необходимые значения площади помещения.

Начиная любой ремонт, вам нужно знать, как рассчитать площадь комнаты. Эти знания помогут вам подобрать правильное количество материалов, а также грамотно просчитать габариты. Такие знания необходимы и при приобретении недвижимости, когда нужно проверить указанную в документах площадь.

Наш обзор поможет вам вспомнить школьные знания и подскажет, как применить их на практике. Кроме того, вы сможете воспользоваться специальным калькулятором.

При расчете площадей потолка, пола и стен, необходимо выяснить, как рассчитать квадратный метр. Для вычислений необходимо выбрать мерную ленту или рулетку с нанесением делений в сантиметрах или метрах. Такое приспособление применяются для площади в квадратных метрах.

Если величина получается больше метра, то используются не только метры, но и сантиметры.

Чтобы правильно провести расчеты можно воспользоваться калькулятором квадратных метров. При необходимости померить всю длину, можно делать это поэтапно. Например, сделать отметку там, где закончилась рулетка, а затем протянуть ее еще раз.

Ширина меряется также рулеткой. При этом ее располагают под углом в 90 градусов к длине. Если длина меньше метра, то необходимо округлить в сторону ближайшего сантиметра.

При расчете квадратных метров калькулятором, не всегда получается выполнить измерения в метрах. Показатель отображается, как в метрах, так и в сантиметрах. При этом 1 см равняется 0,01 метра. Например, 98 см равно 0,98 м. То есть можно записать 2,98 м. Чтобы получить площадь нужно длину умножить на ширину. Округлять значение можно в большую сторону.

Стоит отметить и другие единицы измерения:

  • в 1 квадратном фунте – 0,093 квадратных метра;
  • в ярде – 0,84 кв. м.

требуется точный расчет материалов для ремонта;
наемные мастера часто проводят расчеты оплаты за квадратный метр, что необходимо перепроверять для исключения обмана;
необходимы знания расчетов при выборе площади

Часто оплата коммунальных услуг вычисляется, исходя из размеров комнаты;
чтобы определить нормативы освещенности также нужно знать габариты помещения;
зная площадь, всегда можно посчитать объем, что очень важно при установке отопительных, вентиляционных и климатических устройств.. В ролике дается простое объяснение необходимых значений:

В ролике дается простое объяснение необходимых значений:

Как посчитать площадь комнаты: методика расчета по полу

Можно рассчитать площадь пола. Данная процедура состоит из таких этапов. Прежде всего, необходимо освободить стены помещения. Лучше проводить измерения в пустом помещении. Если помещение прямоугольное, то можно перемножить две стороны

В реальности стороны могут немного отличаться, поэтому так важно мерить все стороны. В некоторых случаях комната может быть не правильной конфигурации

В такой ситуации все пространство делится на отдельные прямоугольники. При этом можно нарисовать схему со всеми размерами. Затем считается площадь отдельных участков. Кстати, помещение не обязательно будет состоять только из прямоугольников. Оно может содержать треугольники и даже круги.

Если вы не знаете, как посчитать квадратные метры комнаты, то можно воспользоваться специальным калькулятором. При вычислении габаритов не обязательно соблюдать все размеры до сантиметра. Часто применяется округление значений. Иногда требуется учитывать разные углубления и выступы в стенах.

При расчетах важно учитывать и их предназначение. Если нужно узнать значения для монтажа теплого пола, то можно не учитывать пространство, занятое тяжелой мебелью

Есть варианты, когда в помещении используются разные уровни пола. В подобной ситуации также требуется поделить комнату на отдельные зоны. Не стоит осуществлять замеры по стене, так как она может иметь кривую поверхность.

Сложно определить площадь по полу, имеющего разнообразные выступы в виде волн или полукругов.

Как посчитать площадь стен

Чтобы определить площадь стен, нужно знать, как рассчитать периметр комнаты. Определение площади часто требуется для закупки всевозможных материалов для отделки. Кроме длины и ширины помещения, понадобится выяснить высоту комнаты, а также габариты проемов двери и окон.

Расчет площади стен сложной конфигурации

При расчетах стоит учитывать, что высота потолков даже в одном помещении может варьироваться, особенно если комната мансардного типа. Отдельно вычисляются значения всех стен, а затем их них отнимаются оконные и дверные проемы.

Вычисления при полукруглой стене

Точные значения можно выявить с помощью калькулятора расчета площади стен комнаты. Иногда требуется определить объем помещения. В такой ситуации необходимо перемножить три значения: длину, ширину и высоту комнаты. Данный показатель меряется в кубических метрах.

Пример расчета обоев с помощью специальной электронной программки

Если помещение имеет разноуровневое зонирование, то можно провести такие расчеты:

  • померить все участки стен. Замеры рекомендуется выполнять поближе к потолку;
  • вычислить показатели площади по полу;
  • на каждом вертикальном участке необходимо промерить длину и высоту, а затем данные значения перемножить;
  • прибавьте показатели к значению пола.

У каждой комнаты есть оптимальные параметры, которые можно учитывать при планировке строительного объекта. Минимальный показатель жилого помещения равняется 8 кв. м. Комната общего назначения, такая как зал или гостиная может иметь площадь от 14 до 25 кв. м. Минимальный показатель высоты помещения составляет 240 см. Если потолок более трех метров, то такое пространство сложнее обогревать. Кухня должна иметь площадь не менее 6 кв. м.

Проведение грамотных расчетов позволит создать уютный интерьер даже при сложной конструкции

Правильное вычисление площади помещения является гарантией качественного проведения ремонта. Такой подход позволит свести к минимуму затраты на приобретение материалов.

Как посчитать площадь стен можно посмотреть на видео:

Watch this video on YouTube

Предыдущая РемонтКрасивые и практичные перегородки для зонирования пространства в комнате: 70 идей и советы дизайнеров
Следующая РемонтКак сделать клейстер: технологии и особенности применения

Как узнать площадь окон и дверей?

Площадь, занятая окнами, измеряется по откосам и подоконнику. Высота окна определяется по боковому откосу, ширина – по подоконнику или верхнему откосу.

Например, ширина окна – 1,55 м, высота – 1,65 м.

1,65 х 1,55 = 2,56 м2

Если окон несколько, общая площадь их суммируется.

Площадь треугольного окна: S = 0,5А*h, где А – нижняя сторона/ширина окна, h – высота.

Если ширина треугольного окна 2 метра, а высота – 1,5 метра, то площадь окна составит:

0,5 х 1,5 х 2 = 1,5 м2.

Площадь дверей, также как и площадь прямоугольной стены, измеряется простым умножением ширины двери на высоту. За основу берутся снятые замеры по коробке, а не по полотну.

Формула Герона

Именно эта формула является ответом на вопрос, как по трем сторонам найти площадь треугольника. Прежде чем ее записать, обозначим длины отрезков произвольной фигуры как a, b и c. Формула Герона записывается в следующем виде: S = √(p*(p-a)*(p-b)*(p-c)).

Где p — полупериметр фигуры, то есть: p = (a+b+c)/2.

Несмотря на кажущуюся громоздкость, приведенное выражение для площади S запомнить легко. Для этого следует сначала рассчитать полупериметр треугольника, затем вычесть из него по одной длине стороны фигуры, перемножить все полученные разницы и сам полупериметр. В конце следует взять квадратный корень от произведения.

Данная формула носит имя Герона Александрийского, жившего в начале нашей эры. Современная история полагает, что именно этот философ впервые применил указанное выражение для выполнения соответствующих вычислений. Эта формула опубликована в его труде «Метрика», который датируется 60-м годом нашей эры. Отметим, что некоторые работы Архимеда, жившего на два столетия раньше Герона, содержат признаки того, что греческому философу была уже известна формула. Кроме того, как найти площадь треугольника, зная три стороны, также знали древние китайцы.

Важно отметить, что поставленную задачу можно решить, не зная о существовании формулы Герона. Для этого следует провести в треугольнике пару высот и воспользоваться общей формулой из предыдущего пункта, составив соответствующую систему уравнений

Выражение Герона можно использовать для вычисления площадей произвольных многоугольников, предварительно разбивая их на треугольники и вычисляя длины возникающих диагоналей.

Для прямоугольного треугольника

В случае треугольника с прямым углом формулы для нахождения площади будут немного отличаться. Найти S можно будет несколькими способами.

По двум сторонам

Если вам известны оба катета данной фигуры, рассчитать S можно умножив их друг на друга, а потом разделив на пополам:

\(S=\frac{a\times b}2\)

где a и b — катеты прямоугольного треугольника.

Через гипотенузу и острый угол

Зная длину гипотенузы и величину одного из острых углов, мы можем найти один из его катетов по определению косинуса. И уже потом можем использовать формулу для нахождения площади треугольника через две стороны и синус угла между ними.

Начнем с поиска катета:

\(\cos\left(\alpha\right)=\frac ac\)

\(a=c\times\cos\left(\alpha\right)\)

где c — гипотенуза треугольника, a — его катет, а α —угол между ними.

Подставляем получившееся значение в формулу \(S=\frac12a\times c\times\sin\alpha\), получается:

\(S=c^2\times\cos\left(\alpha\right)\times\sin\left(\alpha\right)\)

Через катет и прилежащий угол

В этом случае нужно будет использовать следующую формулу:

\(S=\frac12\times a^2\times\tan\left(\alpha\right)\)

Через радиус вписанной окружности и гипотенузу

Зная радиус вписанной в данную фигуру окружности и гипотенузу, мы можем использовать следующее уравнение для расчета:

\(S=r\times(r+c)\)

где r — радиус вписанной окружности, c — гипотенуза.

Через вписанную окружность

Радиус, опущенный в точку касания окружности и гипотенузы прямоугольного треугольника, делит эту гипотенузу на неравные отрезки. Если нам известны величины этих отрезков, мы можем найти площадь фигуры по формуле:

\(S=с_1\times с_2\)

где \(с_1\) и \(с_2\) — неравные отрезки гипотенузы.

По формуле Герона

Если мы знаем длины всех сторон данного многоугольника, мы можем рассчитать S по формуле Герона:

\(S=(p-a)\times(p-b)\)

где \(p=\frac{a+b+c}2\) — полупериметр фигуры.

Как посчитать квадратные метры стены с окном

В таком случае надо отдельно высчитать размер стены, отдельно – размер окна. Потом из большей площади вычесть меньшую. Получится число метров квадратных, которое необходимо будет покрыть краской или штукатуркой.

Алгоритм действий:

  1. По уже пройденному сценарию высчитать размер стены. Пускай будет уже известное число – 15,4 м2.
  2. Далее измерить высоту и длину окна. Перемножить числа. К примеру: длина 1,5 м, высота 1,2 м. Если умножить, то получится 1,8. Значит, площадь окна 1,8 кв. м.
  3. Берем площадь стены и вычитаем из нее размер окна: 15,4 – 1,8 = 13,6. Площадь, которую необходимо будет привести в порядок, – 13,6 кв. м.

1 Общие формулы для вычисления площади треугольника

Формула площади треугольника по длине и высоте

S= a*h/2,
где а – это длина стороны треугольника, площадь которого нужно найти, h-длина проведенной к основанию высоты.

Формула Герона

S=√р*(р-а)*(р-b)*(p-c),
где √-это квадратный корень, p-полупериметр треугольника, a,b,c-это длина каждой стороны треугольника. Полупериметр треугольника можно вычислить по формуле p=(a+b+c)/2.

S = (a*b*sin(α))/2,
где b,c -это длина сторон треугольника, sin(α)- синус угла между двумя сторонами.

Формула площади треугольника по радиусу вписанной окружности и трем сторонам

S=p*r,
где p-это полупериметр треугольника, площадь которого нужно найти, r-радиус вписанной в этот треугольник окружности.

Формула площади треугольника по трем сторонам и радиусу описанной вокруг него окружности

S= (a*b*c)/4*R,
где a,b,c-это величина длины каждой стороны треугольника, R- радиус описанной вокруг треугольника окружности.

Формула площади треугольника по декартовым координатам точек

Декартовы координаты точек – это координаты в системе xOy, где x- это абсцисса, y- ордината. Декартовой системой координат xOy на плоскости называют взаимно перпендикулярные числовых оси Oх и Oy с общим началом отсчета в точке О. Если заданы координаты точек на этой плоскости в виде A(x1, y1), B(x2, y2) и C(x3, y3), то можно вычислить площадь треугольника по следующей формуле, которая получена из векторного произведения двух векторов.
S = |(x1 – x3)•(y2 – y3) – (x2 – x3)•(y1 – y3)|/2,
где || обозначает модуль.

Пример решения задачи

Зная, как по трем сторонам найти площадь треугольника, закрепим полученные знания с помощью решения следующей задачи. Пусть стороны фигуры равны 5 см, 4 см и 3 см. Нужно найти площадь.

Известны три стороны треугольника, значит, можно воспользоваться формулой Герона. Вычисляем полупериметр и необходимые разности, имеем:

  • p = (a+b+c)/2 = 6 см;
  • p-a = 1 см;
  • p-b = 2 см;
  • p-c = 3 см.

Тогда получаем площадь: S = √(p*(p-a)*(p-b)*(p-c)) = √(6*1*2*3) = 6 см2.

Приведенный в условии задачи треугольник является прямоугольным, что нетрудно проверить, если воспользоваться теоремой Пифагора. Поскольку площадь такого треугольника половине произведения катетов равна, то получаем: S = 4*3/2 = 6 см2.

Полученное значение совпадает с аналогичным для формулы Герона, что подтверждает справедливость последней.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector