Защиты от скачков напряжения 220 вольт в квартире и доме
Содержание:
- Автомат или предохранитель перед УЗИП
- Какой фирмы лучше купить
- Источники появления импульсной перегрузки и ее действие на электросеть
- Конструкции УЗПН
- Способы защиты от перенапряжений в электрических сетях
- Зачем нужно регулирующее напряжение реле
- Особенности защиты домашней электропроводки
- Результаты тестирования
- Конструкция
- УЗИП — что это такое и для чего нужно
- Выбор устройства
- Как защититься от перепадов?
Автомат или предохранитель перед УЗИП
Обязательным условием установки УЗИП является наличие аппарата защиты перед ним – автомата или предохранителя.
Причем специалисты рекомендуют ставить именно предохранитель.
В любом автоматическом выключателе есть катушка, обладающая индуктивностью. А вы эту самую катушку, состоящую из множества витков, устанавливаете последовательно в цепь с УЗИП. Помните, что мы ранее говорили про максимальные расстояния проводников для подключения устройства?
Так вот, выставив перед УЗИП автомат, у вас получится ситуация, когда ток молнии, помимо самого ОПС, вынужден будет пройти через всю катушку, образуя на ней дополнительное напряжение. Иногда эта величина может доходить до 100кВ!
Поэтому и ставят перед УЗИП предохранители с плавкой вставкой, длина которой всего пару сантиметров.
Кстати, есть модели УЗИП, в которых плавкая вставка встроена в корпус устройства.
Только не путайте назначение всех этих предохранителей или автоматов. Они не нужны для защиты самого ОПС. Их обязанность — отсоединить после срабатывания поврежденный элемент цепи.
УЗИП выполнив свою главную задачу, остается фактически “закороченным”, и подать напряжение на все остальное оборудование с короткозамкнутым элементом внутри цепи вы не сможете.
При этом у данной защиты, когда она стоит непосредственно перед самим аппаратом, а не на главном вводе, есть один существенный недостаток. Дело в том, что большинство молний многокомпонентные и их разряд вызывает не один импульс, а несколько.
Причем импульсы эти достигают устройства одномоментно. Представьте себе такую картину – пришла первая волна максимальной величины и заставила не просто сработать УЗИП, но и вывела из работы сменный модуль (выпал красный индикатор) с аппаратом защиты до него.
И тут же за первым импульсом накатывает второй (всего через 60-80мс), а защиты то уже нет! Поэтому иногда лучше защиту в виде автоматов или предохранителей размещать на главном вводе. Она после первого срабатывания будет гасить всю сеть 220В.
УЗИП чаще всего выходят из строя (срабатывают без возможности восстановления параметров варистора) по двум причинам:
слишком большое напряжение или разряд, который превышает рабочий диапазон (неправильно выбрали или установили не там, где надо)
длительное перенапряжение (не кратковременный импульс)
Например, при обрыве нейтрали или при длительном однофазном КЗ.
Какой фирмы лучше купить
Стоит отметить, что рынок переполнен уже готовыми щитками, которые могут включать в себя одновременно несколько описанных выше модулей защиты от импульсных перенапряжений. Классы применяются разные, в зависимости от компании (торговой марки), рынка сбыта и целевой аудитории. Крепление агрегата производится на стене (в щитке), а подключение осуществляется непосредственно к имеющейся проводке.
На окончательной стоимости отразится не только надежность конструкции, но и наценка за «бренд». Бюджетные модели относятся к категории наиболее распространенных ошибок при выборе подобного оборудования. Не стоит экономить за собственной безопасности. Лучше отдать предпочтение проверенным фирмам и брендовым моделям, которые успели получить многочисленные положительные отзывы от покупателей. Чем лучше зарекомендовал себя на рынке производитель, тем выше будет и стоимость продукта.
Рейтинг производителей выглядит следующим образом:
- ABB.
- Hakel.
- OBO Bettermann.
- Schneider Electric.
- Phoenix Contact.
- Citel.
- Dehn.
Источники появления импульсной перегрузки и ее действие на электросеть
Перед началом грозы предусмотрительные и осторожные люди отключают из сети мало-мальски ценную бытовую технику. Многие этим простым правилом пренебрегают, рассчитывая на систему защиты электроприборов. Это не очень предусмотрительно и чревато выходом их из строя.
Импульсное перенапряжение может иметь как природный, так и техногенный характер. В первом случае причиной перегрузки является удар молнии в линию электропередач, причем не обязательно находящуюся непосредственно рядом с домом. Достаточно ее попадания в ЛЭП на расстоянии в несколько километров от потребителя.
Перегрузки техногенного характера, в отличие от природных, сложнее спрогнозировать, происходят они внезапно. Причина их возникновения – повреждение либо работа подстанции в нештатном режиме. Они длятся непродолжительный промежуток времени и могут оставаться незамеченными.
Современные электроприборы рассчитаны на броски питания до 1 кВ, но если этот лимит превышен, сгорают блоки питания, происходят короткие замыкания в сети и даже пожары.
Конструкции УЗПН
УЗПН применяются для защиты различных по мощности и конструкции ВЛ, что и определяет разнообразие конструктивных исполнений, которое отражено в обозначении:
- Ш — линия на штыревых изоляторах. ОПН с электродом 1 для искрового промежутка крепится вблизи крепления изолятора. Зажим с прорезающими губками и электродом 2 крепится на изолированный провод.
- ОЛ — линия на опорных линейных изоляторах. Для крепления одного из электродов используется удлинительная штанга.
- ПС — линия на подвесных стеклянных изоляторах. ОПН с электродом 1 крепится на удлиненном кронштейне. Зажим с прорезающими губками имеет место для крепления поддерживающего кронштейна для регулируемого электрода 2.
- ЛК — линия на подвесных полимерных изоляторах. Габариты полимерных изоляторов меньше стеклянных, поэтому удлинительные кронштейны не используются. ОПН с электродом 1 крепится к креплению изолятора, а зазор выставляется за счет положения зажима на проводе с гнущимся электродом 2 нужной длины.
Компания ВЭЛСнаб предлагает все типы УЗПН, которые сертифицированы в системе ГОСТ Р и успешно аттестованы, с рекомендацией к применению, комиссией ОАО «ФСК ЕЭС».
Способы защиты от перенапряжений в электрических сетях
Перенапряжение – это ненормальный режим работы в электрических сетях, который заключается в чрезмерном увеличении значения напряжения выше допустимых значений для участка электрической сети, который является опасным для элементов оборудования данного участка электрической сети.
Изоляция оборудования электроустановок рассчитана на нормальную работу при определенных значениях напряжения, в случае наличия перенапряжения, изоляция приходит в негодность, что приводит к повреждению оборудования и представляет опасность для обслуживающего персонала или людей, которые находятся в непосредственной близости к элементам электрических сетей.
Перенапряжения могут быть двух видов – природными (внешними) и коммутационными (внутренними). Природные перенапряжения – это явление атмосферного электричества. Коммутационные перенапряжения возникают непосредственно в электрических сетях, причинами их проявления могут быть большие перепады нагрузки на линиях электропередач, феррорезонансные явления, послеаварийные режимы работы электрических сетей.
Способы защиты от перенапряжений
В электроустановках для защиты оборудования от возможных перенапряжений применяют такое защитное оборудование, как разрядники и ограничители перенапряжения нелинейные (ОПН) .
Основным конструктивным элементом данного защитного оборудования является элемент с нелинейными характеристиками. Характерная особенность данных элементов заключается в том, что они изменяют свое сопротивление в зависимости от приложенного к ним значения напряжения. Рассмотрим вкратце принцип работы данных защитных элементов.
Разрядник или ограничитель перенапряжения присоединяется к шине рабочего напряжения и к контуру заземления электроустановки. В нормальном режиме, то есть, когда сетевое напряжение находится в пределах допустимых значений, разрядник (ОПН) имеет очень большое сопротивление, и он не проводит напряжение.
В случае возникновения перенапряжения на участке электрической сети сопротивление разрядника (ОПН) резко падает, и данный защитный элемент проводит напряжение, способствуя утечке возникшего скачка напряжения в заземляющий контур. То есть на момент перенапряжения разрядник (ОПН) осуществляет электрическое соединение провода с землей.
Разрядники и ОПН устанавливаются для защиты элементов оборудования на территории распределительных устройств электроустановок, а также в начале и в конце линий электропередач напряжением 6 и 10 кВ, которые не оборудованы грозозащитным тросом.
Для защиты от природных (внешних) перенапряжений на металлических и железобетонных конструкциях открытых распределительных устройств устанавливают стержневые молниеотводы . На высоковольтных линиях напряжением 35 кВ и выше применяют грозозащитный трос (тросовый молниеотвод), который располагается в верхней части опор линий электропередач на всей их протяженности, соединяясь с металлическими элементами линейных порталов открытых распределительных устройств подстанций. Молниеотводы притягивают атмосферные заряды на себя, тем самым предупреждая их попадания на токоведущие части электрооборудования электроустановок.
Для обеспечения надежной защиты оборудования электроустановок от возможных перенапряжений, разрядники и ограничители перенапряжений, как и все элементы оборудования, должны проходить периодические ремонты и испытания. Также необходимо в соответствии с установленной периодичностью проверять сопротивление и техническое состояние заземляющих контуров распределительных устройств.
Перенапряжения в низковольтных сетях
Явление перенапряжений также характерно и для низковольтных сетей напряжением 220/380 В. Перенапряжения в низковольтных сетях приводят к выходу из строя не только оборудования данных электрических сетей, но и электроприборов, которые включены в сеть.
Для защиты от перенапряжений в домашней электропроводке используют реле напряжения или стабилизаторы напряжения, источники бесперебойного питания, в которых предусмотрена соответствующая функция. Также существуют модульные устройства защиты от импульсных перенапряжений, предназначенные для установки в домашний распределительный щиток.
В низковольтных распределительных устройствах предприятий, электроустановок, ЛЭП для защиты от перенапряжений применяют специальные ограничители перенапряжений по принципу работы схожие с высоковольтными ОПН.
Зачем нужно регулирующее напряжение реле
Грамотное название рассматриваемого устройства – «реле контроля напряжения». Но среднее слово в разговорах электриков между собой нередко выпадает из этого термина. В принципе, это один и тот же электротехнический прибор защитной автоматики. Плюс данное оборудование часто называют еще и «защитой от обрыва нуля». Почему – станет понятно ниже.
Не стоит путать автоматы УЗО и РКН. Первые защищают линию от перегруза и короткого замыкания, а вторые от скачков напряжения. Это разные по функциональному предназначению приборы.
Главная задача РКН – это отключение электроприборов от сети при слишком высоких и слишком низких напряжениях в ней, чтобы подключенная к электропитанию техника не вышла из строя
Надпись «~220 В» привычна всем россиянам. На таком переменном вольтаже работает в доме бытовая техника, подключенная к розеткам. Однако по факту максимум напряжения в домашней электросети только колеблется вокруг этой отметки с разбросом +/-10%. А в отдельных случаях перепады достигают и больших величин. Вольтметр вполне может показывать падения до 70 и всплески до 380 Вольт.
Для электротехники страшно излишне как низкое, так и высокое напряжение. Если компрессор холодильника “недополучит” электроэнергии, то он просто не запустится. В итоге техника неизбежно перегреется и сломается.
При низком вольтаже обыватель в большинстве случаев даже не в состоянии внешне определить, исправно или нет работает оборудование в такой ситуации. Визуально можно лишь увидеть тускло светящиеся лампочки накаливания, напряжение к которым подается меньшее, чем положено.
С высокими всплесками все гораздо проще. Если на вход питания телевизора, компьютера или микроволновки подать 300–350 Вольт, то в лучшем случае в них перегорит предохранитель. А чаще всего они “сгорят” сами. И хорошо еще, если при этом не произойдет реального возгорания техники и возникновения пожара.
Многоквартирные дома обычно запитаны от трехфазной сети 380 В, а к квартире уже идет однофазная проводка на 220 В от электрощита на этаже
Основные проблемы с перепадами напряжения в многоэтажках возникают из-за обрыва рабочего нуля
Этот провод повреждают по неосторожности электрики во время ремонта либо он сам просто перегорает от старости. Если в доме на подъездной линии стоит комплект необходимой защиты современного уровня, то в результате такого обрыва происходит срабатывание автоматики УЗО
Все заканчивается относительно нормально.
Однако в старом жилом фонде, где не стоят защитные автоматы, пропадание нуля приводит к перекосу фаз. И тогда в одних квартирах напряжение становится низким (50–100 В), а в других резко высоким (300–350 В). У кого что в результате выйдет в розетке, зависит от подключенной в данный конкретный момент к электросети нагрузки. Заранее точно рассчитать и предугадать это невозможно.
В итоге у одних вся техника перестает работать, а у других сгорает от перенапряжения. Здесь-то и нужно реле контроля напряжения. При возникновении проблем оно отключит сеть, предупредив поломку телевизоров, холодильников и т.п.
В частном секторе проблема с перепадами напряжения несколько иная. Если коттедж расположен на большом удалении от уличного трансформатора, то при повышенном потреблении электроэнергии в домах до него в этой крайней точке вольтаж может упасть до критически низких отметок. В результате из-за длительной нехватки «вольт» электродвигатели в бытовых электроприборах неизбежно начнут гореть и выходить из строя.
Особенности защиты домашней электропроводки
Организация защиты от возникающего высокого напряжения – один из ключевых вопросов при прокладке электросети в жилом доме. Осуществляется она с помощью особых трансформаторов и фильтров сети. Во многих домах на этажных щитках устанавливаются автоматические выключатели, которые защищают от электротоков при коротком замыкании и временных перегрузок.
Когда возможна высокая нагрузка, все устройства, защищающие сети от повышенного напряжения, должны иметь приспособления для автоотключения и выключатели, реагирующие на изменения показателей тока. Как правило, самая надежная защита от подобных скачков ставится на входном силовом проводе, поскольку именно он испытывает наибольшее воздействие во время пиков нагрузки.
Схема защиты от перенапряжения домашней электросети бывает простой и многоуровневой. Простая – представлена в основном реле перенапряжения в этажных щитках, а многоступенчатая (комбинированная, защищающая как от бытовых скачков напряжения, так и от импульсных, при грозах) – УЗИП, т.е. устройства защиты от импульсных перенапряжений. Такие устройства наиболее часто встречаются в частных домах.
Устройство защиты от импульсного перенапряжения
Обратите внимание! Электронные приборы выходят из строя как из-за повышенного, так и из-за пониженного напряжения в сети (например, холодильники тяжело запускаются, что негативно сказывается на их дальнейшей работе). Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание
Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание.
Чтобы не допустить негативных последствий, применяют следующие защиты, функционирующие по таким принципам:
- при резком внеплановом повышении напряжения происходит отключение электросхемы в доме или в квартире;
- вывода полученного сверхнормативного электрического потенциала от электроприборов путем перевода его в земляной контур.
Если напряжение поднимается незначительно (например, до 380 вольт), на помощь приходят различные стабилизаторы. Однако их защитные возможности довольно ограничены – они больше рассчитаны на поддержание заданных рабочих значений в электросетях.
Стабилизаторы напряжения применяются для поддержания рабочих параметров электросети
При проектировании защиты для частного дома рассматривают различные конструкционные решения и их технические характеристики. Необходимо учитывать принципы формирования базы ограничителей перенапряжения (опн). Например, газонаполненные разрядники после того, как импульс прошел, пропускают через себя т.н. сопровождающий ток, напряжение которого сопоставимо с коротким замыканием. По этой причине они сами могут быть источником возгорания, и их нельзя применять для защиты от электрического пробоя.
Для домашних сетей чаще всего применяют варисторное устройство защиты (полупроводниковые резисторы) – реостаты, скомпанованные из варисторных «таблеток» из смеси оксидов цинка, висмута, кобальта и других. При штатном функционировании электросети такой автомат защиты допускает микроскопические утечки, а при проходе импульса повышенной вольтажности – способен мгновенно перестроиться на режим «туннеля» и «спустить» больше тысячи ампер за очень короткий промежуток времени, поскольку сопротивление на этом приспособлении снижается с возрастанием силы тока, после чего происходит быстрое возвращение к штатной «боевой готовности».
Варисторные таблетки невелики по размеру
Результаты тестирования
Для получения результатов по эффективности защиты была протестирована серия операционных усилителей с использованием стандарта МЭК (IEC‑61000–4-2) в части требований по устойчивости к электростатическим разрядам. В таблице 4 показано, какие компоненты предохраняют те или иные схемы защиты. Несмотря на то, что стандарт предусматривает испытания тремя воздействиями импульса перенапряжения уровнем ±8 кВ, все представленные схемы (чтобы обеспечить достаточный технологический запас по степени защиты) прошли тестирование при 100 импульсах воздействия уровнем ±9 кВ.
Таблица 4. Список устройств и соответствующих им конфигураций защиты, которые прошли испытания на соответствие стандарту IEC-61000-4-2
Наименование
продукта
Основная характеристика, полоса пропускания
Элементы защиты
R, Ом
C, пФ
D, V_WM
AD823
С входным каскадом на полевых транзисторах
220
100
16 МГц
68
36
ADA4077
Малошумящий, рецизионный
220
100
3,9 МГц
68
36
ADA4084
Low noise
220
100
15,9 МГц
68
36
ADA4522
Малошумящий, рецизионный
220
100
2,7 МГц
68
36
ADA4528
Малошумящий, рецизионный
220
100
3 МГц
68
36
ADA4610
Малошумящий, рецизионный
220
100
15,4 МГц
68
36
ADA4622
Малошумящий, рецизионный
220
100
8 МГц
68
36
ADA4625
Low noise, JFET
220
100
18 МГц
68
36
ADA4661
Прецизионный
220
100
4 МГц
68
36
LT1490
Микромощный
220
100
200 кГц
68
36
LT6016
Маломощный, прецизионный, OTT
220
100
3,2 МГц
68
36
LT6018
Малошумящий, прецизионный
220
100
15 МГц
68
36
LT1636
Микромощный, OTT
220
100
200 кГц
220
36
LT1638
Микромощный, OTT
220
100
1,1 МГц
68
36
LT1494
Микромощный, прецизионный, OTT
220
100
100 Гц
68
36
Согласно стандарту МЭК, требуется, чтобы заземление генератора испытательного импульса было подключено к заземлению усилителя через два резистора номиналом 470 кОм параллельно с конденсатором емкостью 30 пФ. Используемая тестовая установка выполнена более жесткой, потому что заземление генератора испытательного сигнала было напрямую связано с заземлением усилителя. Для дополнительной аутентичности эти результаты были также проверены и с помощью описанной выше схемы заземления в соответствии с требованиями МЭК. Имейте в виду, что усилители имеют очень разные внутренние структуры — то, что пригодно для устройств из предложенного списка, может работать или нет для других. Рекомендуется, чтобы при использовании иных операционных усилителей или других защитных компонентов они предварительно были тщательно протестированы.
Используемые компоненты защиты:
- Резисторы: серия ERJ-P6, типоразмер 0805, производство компании Panasonic.
- Конденсаторы: керамические, типоразмера 0805, диэлектрик C0G/NPO, номинальное рабочее напряжение 100 В, производства компании Yageo.
- TVS-диоды: CDSOD323‑T36SC, производство компании Bourns (двунаправленные, напряжение 36 В, с малым током утечки, нормированные для защиты от электростатического контактного разряда, электрических быстрых переходных процессов (пачек) и устойчивые к выбросам напряжения в рамках требований соответствующих стандартов).
- Варисторы для защиты от разрядов статического электричества: многослойные варисторы серии MLA, типоразмер 0603, рабочее напряжение 26 В, производство компании Bourns.
Конструкция
Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.
В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.
- Для установки на линиях электропередач и защиты оборудования на промышленных объектах.
- Защита от пиковых импульсов бытового оборудования дома или квартиры обеспечивается компактными, с привлекательным дизайном устройствами.
На изображении цифрами обозначены следующие конструктивные элементы:
- 1 — корпус;
- 2 — предохранитель, срабатывающий после прохождения импульса напряжения, с параметрами силы тока короткого замыкания;
- 3 — варисторный модуль, легко сменяемый без отключения базового элемента;
- 4 — индикатор, показывающий текущий ресурс работы устройства;
- 5 — насечки на контактных зажимах, увеличивающие плотность и площадь соприкосновения с целью предотвращения оплавления проводов в результате нагрева.
УЗИП — что это такое и для чего нужно
Довольно распространенным явлением считается возникновение импульсных помех в сети. Подобные явления могут возникать во время выключения или включения мощных приборов, а также во время непогоды. Сеть представляет собой цепь RLC, в которой регулярно возникают колебания, которые и способствуют возникновению выбросов напряжения. В цифровых и слаботочных цепях подобная оборона крайне актуальна. Речь идет о коммутационных помехах, которые легко проходят чрез различные виды источников питания.
В европейских странах, подобная ограда считается обязательной, поэтому еще при строительстве нового дома или многоквартирного блока происходит установка помехоподавляющих фильтров, УЗИП и других модулей защиты для систем электроснабжения. Следует отметить, что качество сетей у них гораздо выше, да и грозовых областей несколько меньше.
Особой популярностью подобные модели начали пользоваться последние 20 лет, когда на рынке стало появляться больше новых транзисторов с высокими характеристиками. Именно такие агрегаты крайне чувствительны к любым скачкам показателей обратного напряжения. Оборудование с подобным функционалом используется практически во всех импульсных источниках питания, мощность которых не превышает 1 кВА. Используются в качестве связующих элементов на сетевой (первичной) стороне.
Зачем нужны
УЗИП используются для сглаживания помех, возникающих в сети, для стабилизации работы информационных системы и от скачков, которые могут быть вызваны косвенным или прямым воздействием сильной непогоды (молний). Высокочастотные и низкоэнергетические помехи – не редкость в больших городах и отдаленных населенных пунктах.
Для чего предназначены:
- Предохранение от короткого замыкания удаленного типа. Подобное случается в результате короткого замыкания.
- Предохранение электрики от импульсных перенапряжений. Зачастую причина кроется в коммутационных процессах, которые наблюдаются в сети. Связаны с выключением и включением приборов с большой нагрузкой (индуктивной). Примером служат сварочные и силовые аппараты, мощные электрические двигатели.
- Предохранение от удара молнии. В такой момент все оборудование, которое было подключено к сети, выходит из строя. Замена обойдется в колоссальную сумму. Во избежание подобных трат и устанавливаются самые хорошие УЗИП от лучших европейских производителей.
Наименований у оборудования несколько:
- ОИН – ограничители импульсных напряжений;
- ОПН – ограничители перенапряжений сети.
Однако, на принципе работы или функционале это не отражается.
Выбор устройства
Чтобы выбрать реле, нужно знать номинал электрического тока, который может пропустить через себя вводной автоматический выключатель. При пропускной способности выключателя 25А (5,5 кВт), рабочие характеристики должны быть выше — 32А (7 кВт).
При выборе марки не совсем правильно опираться на потребляемую мощность в сумме, так как реле, которое выдерживает ток 32А, может работать и с нагрузкой в 7 кВт при большей потребляемой мощности.
Установка
Существует стандартная, простая схема установки реле напряжения в распределительный щит. Его устанавливают после электрического счетчика, подключают к фазному проводу. Если происходит скачок за пределы нормальных значений, реле отсоединяет сеть от внутренней проводки и защищает дом или квартиру от скачков напряжения.
При суммарной мощности 7 кВт и более, производители настаивают на встраивание в рабочую схему дополнительного электромагнитного контактора, так как он способен разгрузить контакты РН самостоятельным разъединением силовой линии от общей сети. Реле контроля командует на отключение, катушка расцепляет контакты — и все отключается.
Безопасность сети
Каким образом можно создать такую защиту? Безусловно, можно произвести реконструкцию всей сети, пригласить опытных специалистов. Однако если в жилом доме такой вариант приемлем, то при наличии большого количества квартир, со всеми договориться об оплате работы вряд ли удастся.
Для ощутимой пользы РН, его рабочие параметры нужно правильно отрегулировать. Если применяется одно реле, то нужно ориентироваться на характеристики бытовой техники, которая чувствительна к перепадам.
Каждую группу приборов нужно подключать к своему реле напряжения. Настройка должна производиться индивидуально.
При установке времени задержки возобновления питания, нужно опираться на эксплуатационные требования, которые предъявляются бытовой технике. К примеру, у некоторых холодильников задержка равна 10 минутам.
Для обеспечения максимально надежной защиты всех потребителей, нужно использовать схему с несколькими реле.
Сеть с тремя фазами: защита
Эффективно применять такую защиту для кондиционерного, компрессорного, холодильного оборудования, которое имеет электродвигательную нагрузку. Также часто применяются в устройствах, в которых нужно постоянно контролировать наличие полных фаз, качества напряжения.
Справка! Если такое реле установить на входе, то перекос одной из фаз приведет к тому, что обесточатся все потребители, которые имеют однофазное подключение.
Включение производят параллельно нагрузке. Далее производится управление катушкой пускателя на основе магнита. Таким образом, РН не зависит от мощности нагрузки. На выходах есть две группы независимых контактов, которые коммутируют нагрузку до 5А.
Как защититься от перепадов?
А что же защита от перепадов напряжения? Что-то же стоит там, в лестничном щитке, – спросите вы. А ничего там для этого не стоит, – отвечу я. Там предусмотрены либо морально устаревшие «пробки» (если дом уже ветхий), либо автоматические выключатели, которые защищают квартирную проводку от перегрузок по току.
Заметьте, что ключевые слова тут: «квартирную проводку». Знаете почему? Потому что забота об электроприборах – дело их хозяев. То есть наше с вами. Автоматический выключатель бережет проводку от токовой перегрузки, квартиру от пожара, а вот от повышенного или пониженного напряжения оберегать бытовую и дорогостоящую мультимедийную технику никто не обещал.
Значит устройство защиты бытовой электрики от перепадов напряжения целиком наша забота, поэтому будем этим заниматься. А для этого необходимы знания. Разберёмся, какие в нашем распоряжении есть средства.
Сетевые фильтры
Самым доступным способом уберечь технику от скачков напряжения является подключение её к сети не через розетки, а с помощью специальных сетевых фильтров, которые внешне очень похожи на удлинители, но стоят существенно дороже…
Дело во внутренней начинке фильтра. Настоящий сетевой фильтр содержит варистор, предохраняющий нагрузку от импульсных перенапряжений, которые, в свою очередь, возникают в сети от самых разных причин: от включения или выключения мощных потребителей электроэнергии до разряда молнии.
В качественном фильтре есть и режектор, снижающий влияние высокочастотных помех, и электронный блок, защищающий от повышения напряжения, и обычная плавкая вставка от перегрузки по току (короткого замыкания).
Стабилизаторы напряжения
Защита от перепадов напряжения – основное занятие и для стабилизатора напряжения.
Стоят стабилизаторы напряжения в разы дороже сетевых фильтров, но и функционал у них шире.
Фильтр не может повысить или понизить напряжение. Только стабилизатор справится с такой задачей.
Источники бесперебойного питания
Теперь перейдём к ещё одному способу защиты от отключения электроэнергии. Речь пойдет об источниках бесперебойного питания или сокращенно ИБП.
Конечно, у них есть свои недостатки, но сейчас обратим своё внимание на то, что один из самых дорогих электронных приборов в каждом (где есть) доме – компьютер не может нормально работать без ИБП (за рубежом UPS). Как мне думается, это говорит о многом
Обеспечивая, как аккумулятор, бесперебойное снабжение потребителей высококачественной электроэнергией, отдельные ИБП могут выполнять и другие, весьма полезные, функции. Так, UPS может с успехом заменить стабилизатор, выравнивая и стабилизируя сетевое напряжение.
Чаще всего, их используют как устройство защиты от перепадов напряжения при электроснабжении автоматики отопительных котлов. Имея небольшое электропотребление, котлы нуждаются в постоянном электропитании, для своей безопасной работы. Высокая надёжность, долгое время работы в отключенном от сети состоянии, бесшумность и лёгкость подключения – снискали ИБП большую популярность в этом сегменте.