Калькуляторы расчета площади сечения вытяжной отдушины вентиляции

Технические расчеты бесплатно и анонимно =)

  • Отопление

    • Расчет тепловой нагрузки по укрупненным показателям МДК 4-05.2004
    • Расчет диаметра коллектора
    • Расчет расширительного бака для отопления
    • Расчет количества ступеней теплообменника ГВС
    • Расчет нагрева ГВС
    • Расчет длины компенсаторов температурных удлинений трубопроводов
    • Расчет скорости воды в трубопроводе
    • Разбавление пропилен и этиленгликоля
    • Расчет диаметра балансировочной шайбы
    • Проверка работоспособности элеваторной системы отопления
    • кг/с в м3/ч. Перевод массового расхода среды в объемный.
    • Онлайн замена радиаторов Prado на Purmo
    • Примеры гидравлических расчетов систем отопления
    • Sanext

      • Расчет диаметра и настройки клапана Sanext DPV
      • Расчет этажного коллектора системы отопления Sanext
      • Маркировка РКУ Sanext
      • Замена клапана Danfoss AB-QM на Sanext DS
      • Быстрая замена L и T-образных трубок на трубу Стабил
  • Вентиляция

    • Расчет гравитационного давления
    • Расчет расхода воздуха на удаление теплоизбытков
    • Расчет теплоснабжения приточных установок
    • Расчет осушения помещений по методике Dantherm
    • Расчет эквивалентного диаметра и скорости воздуха в воздуховоде
    • Расчет дымоудаления с естественным побуждением
    • Расчет площади воздуховодов и фасонных частей онлайн
    • Расчет естественной вентиляции онлайн
    • Расчет потерь давления на местных сопротивлениях
    • Расчет воздушного отопления совмещенного с вентиляцией
    • Расчет вентиляции в аккумуляторной
    • Расчет температуры приточного и вытяжного воздуха системы вентиляции
    • Расчет углового коэффициента луча процесса
    • Кратности воздухообмена и температуры воздуха
    • Расчет количества облучателей-рециркуляторов медицинских по Р 3.5.1904-04
  • Кондиционирование

    • Расчет мощности кондиционера по теплопритокам в помещение
    • Расчет теплопритоков от солнечной радиации. Инсоляция помещения.
    • Расчет теплопоступлений от источников искусственного освещения
    • Расчет теплопоступлений от оборудования
    • Расчет теплопоступлений от людей
    • Расчет теплопритоков и влаги от остывающей еды
    • Расчет теплопоступлений от инфильтрации воздуха
    • Расчет полной теплоты из явной теплоты
  • Водоснабжение

    • Расчет сопротивления в трубопроводе ВК
    • Расчет глубины промерзания грунта
    • Расчетные расходы дождевых вод
  • Газоснабжение

    • Технико-экономический расчет тепла и топлива
    • Расчет диаметра газопровода
    • Расчет теплотворной способности энергоносителей
  • Смета

    • Расчет площади окраски металлического профиля
    • Расчет площади окраски чугунных радиаторов
    • Расчет расхода теплоизоляции с учетом коэффициента уплотнения
    • Расчет количества досок из кубометра древесины
    • Примеры смет

      • Пример сметы на авторский надзор
      • Пример сметы на перебазирование техники
      • Пример расчета коэффициента к ФОТ при сверхурочной работе.
      • Пример расчета коэффициента к ФОТ при многосменном режиме работы.
      • Пример расчета коэффициента к ФОТ при вахтовом методе работы.
      • Списание материалов в строительстве. Пример формы отчета.
      • Списание материалов в строительстве. Пример формы ведомости.
  • Разные

    • Конвертер технических величин
    • Проверка показаний теплосчетчика онлайн
    • Расчет категории склада для хранения муки
    • Линейная интерполяция онлайн
    • Онлайн расчет маржинальности и точки безубыточности
    • НДС калькулятор онлайн, расчет %
    • Юнит-экономика онлайн калькулятор
    • Онлайн калькулятор стоимости покупки автомобиля по зарплате и доходу семьи
    • Расчет стоимости системы учета энергоресурсов
    • Винный калькулятор
    • Закон Ома
    • Расчет фундамента
    • Статьи

      • Нормы
      • Сравнение типов отопительных приборов
      • Настройка AutoCAD
      • Температура воздуха в Краснодаре за 10 лет зимой
      • Сравнение ИП с ООО
  • Вход

Насколько точная сумма отображается

Вы должны знать, что невозможно на глаз выполнить подсчеты. Калькулятор выдает примерную стоимость реализации, а точная рассчитывается после создания сметы. Сперва к вам приезжает замерщик, исследует помещение. Он сохраняет нижеуказанные данные:

  • Материал стен;
  • Тип потолка, пола;
  • Размеры комнат и подсобных узлов;
  • Аэродинамические свойства объекта;
  • Состояние воздуха на территории;
  • Тип предприятия.

На деле параметров значительно больше. Вдобавок ко всему вы обсуждаете ценовой сегмент дополнительного оборудования, т. к. у нас в наличии оборудование по средней и высокой стоимости. Просто некоторым клиентам выгоднее проводить ремонт раз в несколько лет, другим хочется сделать сеть единожды и забыть о ней.

Составление сметы:

перед ней реализуется монтажная схема, учитывающая основные параметры. Тут же производятся финальные расчеты системы вентиляции онлайн, на основе которых изготавливается смета. В ней прописываются все материалы, детали вплоть до крепежа. При надобности вы корректируете ее, удаляя и меняя нужные узлы. Таким образом можно понизить конечную стоимость или повысить качество, мощность, др. характеристики. Вариантов много. Лучше обсудите их с нашим менеджером.

Полезно знать: специалиста на объект мы высылаем бесплатно. Деньги вносят после обсуждения нюансов и подписания договора.

В завершение проводится согласование с заказчиком. Проект переходит в последнюю стадию, подразумевающую оформление бумаг по ГОСТам. Тут же начинается производство всех деталей. Оно ведется в наших цехах — это значимый плюс. Многие компании заказывают узлы у посредников, однако такой подход исключает контроль качества. Часто дефекты замечаются уже после установки. Организация-исполнитель может со временем отказаться от сотрудничества с тем или иным поставщиком, но созданный ей продукт придется установить. От этого страдает клиент. У нас же плохие комплектующие попросту не пройдут контроль качества, а потому не покинут завод и не попадут к вам.

Полученная в калькуляторе сумма способна измениться как в большую, так и в меньшую сторону после проведения всех замеров.

Полезно знать: в СаНПин точно указываются допустимые нормы воздухообмена, а также максимальные показатели для вредных веществ в окружении. Помимо СНиПов под номерами 2.04.05-91 и 41-01-2003, существуют и санитарные стандарты. Сегодня это ГН 2.2.5.3532-18.

Особые расчетные указания

Кратность обновления воздушных масс напрямую зависит от типа помещения. К примеру, в детской комнате этот показатель равен единице, в то время как в кухонной зоне, оборудованной электроплитой, он составит около 60 м. куб. в час. Если же в кухне располагается газовая печь или котел, работающий на твердом топливе, то тогда к полученному показателю необходимо добавить еще 100 метров кубических. В ванной и туалете кратность воздухообмена должна составлять 25 кубометров.

Естественно, в нежилых помещениях и зонах типа кладовки, лоджии или гардеробной этот показатель соответствует 0,2 кубического метра за один час. Такую же кратность рекомендуется закладывать и в том случае, если в конкретном помещении не живут люди, не ведутся никакие работы и не функционирует способное излучать тепло оборудование.

Кроме того, следует учитывать и площадь жилого помещения, которая приходится на одного жителя. Так, если она превышает 20 квадратных метров, то в комнатах должен быть обеспечен часовой приток чистого воздуха на 30 кубометров. Меньшая квадратура и полное отсутствие возможности проветривания помещения является поводом для того, чтобы повысить этот показатель до 60 кубометров. Подобные рекомендации базируются на том, что за один час каждый квадратный метр жилого помещения должен обеспечиваться притоком, равным 3 метрам кубическим.

Проведя все необходимые вычисления и получив конечный результат, следует сверить его с информацией, которая приводится в разделе «Вентиляция и кондиционирование» СНиП.

Основы расчета вентиляционной системы

Расчет вентиляции бассейнов включает в себя определение расхода воздушных масс. Воздухообмен определяется по таблицам с использованием известной температуры и площади воды.

При расчете системы вентиляции учитываются следующие параметры:

  • площадь воды;
  • площадь всего помещения;
  • площадь дорожек;
  • температура атмосферы на улице;
  • температура атмосферы в помещении;
  • температура воды;
  • количество людей, посещающих бассейн;
  • поступление тепла;

  • поступление в атмосферную среду влаги.

Вентиляция частного бассейна проектируется, исходя из этих данных. Для летнего периода можно добавить более мощное оборудование для понижения температуры входящей атмосферы, и, наоборот, для нагрева в зимнее время.

Вентиляция бассейнов рассчитывается таким образом, чтобы в жилом помещении давление было избыточным относительно всего помещения. Это делается для того, чтобы воздух из бассейна не поступал в жилую часть дома.

Расчет воздуховодов или проектирование систем вентиляции

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

Sс = L * 2,778 / V, где

— расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

2 Определение размеров поперечного сечения

Не последнюю роль в рассматриваемом вопросе также играет расчет сечения воздуховода вентиляции, который подразумевает вычисление площади всей внутренней системы. В этот перечень входит не только воздуховод, но и примыкающие к нему фасонные изделия (переходники, тройники, трубы, заглушки, дефлекторы и пр.). Существует множество конфигураций вытяжных куполов и вспомогательных элементов, и, как правило, для расчета их сечения и площади вполне достаточно базовых знаний такой школьной науки, как геометрия.

В последнее время для обустройства вентиляционных систем применяются такие основные и дополнительные элементы:

  1. 1. Купол или зонт вытяжки в виде трапеции, который классифицируется по типу конструкции на островной и пристенный. В данном случае за основу расчета можно будет взять формулу для усеченной пирамиды разных видов.
  2. 2. Воздуховод с круглым, квадратным или прямоугольным поперечным сечением. Для того чтобы выполнить эти вычисления, можно воспользоваться формулами нахождения площади цилиндра, куба или прямоугольного параллелепипеда.
  3. 3. Дефлекторы имеют более сложную конструкцию, поэтому расчет их площади можно будет произвести только после условного разбития элемента на отдельные геометрические фигуры (конус, цилиндр и пр.).
  4. 4. Соединительные конструкции (отводы, переходы, тройники, заглушки и утки) рассчитываются также, как и дефлекторы.

Воспользовавшись приведенными выше способами вычисления, необходимо ознакомиться с особыми рекомендациями, регламентированными принятыми строительными нормами и правилами, после чего можно завершать подбор наиболее точного значения мощностного потенциала системы вентиляции в доме.

Программа для расчёта воздухораспределения Comfort Air.

Инженерные методы расчёта воздухораспределения для систем вентиляции, кондиционирования воздуха и воздушного отопления позволяют с достаточной точностью произвести расчёт параметров воздуха в рабочей зоне. Сложностью данного расчёта является то, что он производится вручную, иногда по сложным формулам, требующим внимания при вычислениях, а также большой трудоёмкости в случае определения лучшего варианта из нескольких. При этом для всех вариантов необходим полный комплекс расчётов воздухораспределения.

Программа Comfort Air позволяет существенно сократить время расчёта, даже при наличии нескольких вариантов, а также избежать ошибок при вычислениях.

На предварительном этапе необходимо на основе каталога воздухораспределителей Arktos CF CatAir электронного сервиса Arktos Comfort определиться со схемой подачи воздуха, типом воздухораспределителя для решения задачи обеспечения требуемых параметров на основе архитектурно-планировочных, дизайнерских предпочтений. Рекомендуемые типы воздухораспределителей для каждой из схем подачи воздуха приведены в каталоге. Выбрав тип изделия, требуется задать его типоразмер, положение регулирующих элементов и дополнительные опции

Важной частью предварительного этапа является разбивка помещения на модули, которые будут обслуживаться одним воздухораспределителем, так как программа проводит расчёт только для одного воздухораспределителя в заданном модуле помещения

Следующим этапом является задание исходных данных для расчёта: выбор схемы подачи воздуха из предложенных программой, размеры обслуживаемой рабочей зоны (расчётного модуля помещения), расход воздуха, температуру приточного воздуха, требования к температуре в рабочей зоне.

Нажав клавишу «Считай» пользователь мгновенно получит значения скорости воздуха на входе в рабочую зону, потери полного давления и избыточную температуру воздуха в приточной струе. Если полученные значения удовлетворят пользователя, то расчёт будет закончен. Если же результат будет неудовлетворительным, то имеется возможность изменить любой заданный параметр и быстро просчитать новый вариант. Какие параметры возможно изменить? Прежде всего это типоразмер изделия. Возможен также выбор другого типа воздухораспределителя в пределах той же схемы подачи воздуха. Более серьёзным изменением является изменение размеров модуля помещения, то есть изменение количества воздухораспределителей. Наиболее радикальным решением является изменение схемы подачи воздуха и, соответственно, изменение типа воздухораспределителя или изменение заданных параметров по расходу, температуре воздуха и его скорости.

Несмотря на огромные возможности по изменению параметров для выбора оптимального воздухораспределения, расчёт ведётся практически мгновенно и информация о всех просчитанных вариантах хранится в разделе «Журнал» и в любой момент доступна для сравнения.

После проведения расчёта с помощью программы Comfort Air потребитель может получить отчёт по выбранным одному или нескольким вариантам и распечатать его.

Разработчики программы:ООО «Арктос»,+7 (812) 329-53-68NILAA@arktos.ru

Выбор приточной установки

Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью Калькулятора или, при ручном расчете, принять равным типовому значению (см. раздел ).

Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.

Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².

Расчетное значение производительности — 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение — около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.

Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.

После выбора приточной установки (или вентилятора, если используется наборная система) может оказаться, что ее фактическая производительность заметно больше расчетной, а предыдущая модель приточной установки не подходит, поскольку ее производительности недостаточно. В этом случае у нас есть несколько вариантов:

  1. Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
  2. «Задушить» вентустановку с помощью балансировочных дроссель-клапанов, закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
  3. Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5–8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только 3-х ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
  4. Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.

Нужно ли ориентироваться на СНиП?

Во всех расчетах, которые мы проводили, использовались рекомендации СНиП и МГСН. Эта нормативная документация позволяет определить минимально допустимую производительность вентиляции, обеспечивающую комфортное пребывание людей в помещении. Другими словами требования СНиП направлены в первую очередь на минимизацию стоимости системы вентиляции и затрат на ее эксплуатацию, что актуально при проектировании вентсистем для административных и общественных зданий.

В квартирах и коттеджах ситуация иная, ведь вы проектируете вентиляцию для себя, а не для усредненного жителя и вас никто не заставляет придерживаться рекомендаций СНиП. По этой причине производительность системы может быть как выше расчетного значения (для большего комфорта), так и ниже (для уменьшения энергопотребления и стоимости системы). К тому же субъективное ощущение комфорта у всех разное: кому-то достаточно 30–40 м³/ч на человека, а для кого-то будет мало и 60 м³/ч.

Однако если вы не знаете, какой воздухообмен вам нужен для комфортного самочувствия, лучше придерживаться рекомендаций СНиП. Поскольку современные приточные установки позволяют регулировать производительность с пульта управления, вы сможете найти компромисс между комфортом и экономией уже в процессе эксплуатации системы вентиляции.

Этап второй

Здесь рассчитываются аэродинамические показатели сопротивления. После выбора стандартных сечений воздуховодов уточняется величина скорости воздушного потока в системе.

Расчёт потерь давления на трение

Следующим шагом является определение удельных потерь давления на трение исходя из табличных данных или номограмм. В ряде случаев может пригодиться калькулятор для определения показателей на основе формулы, позволяющей произвести расчёт с погрешностью в 0,5 процента. Для вычисления общего значения показателя, характеризующего потери давления на всём участке, нужно его удельный показатель умножить на длину. На этом этапе также следует учитывать поправочный коэффициент на шероховатость. Он зависит от величины абсолютной шероховатости того или иного материала воздуховода, а также скорости.

Вычисление показателя динамического давления на отрезке

Здесь определяют показатель, характеризующий динамическое давление на каждом участке исходя из значений:

  • скорости воздушного потока в системе;
  • плотности воздушной массы в стандартных условиях, которая составляет 1,2 кг/м3.

Определение значений местных сопротивлений на участках

Их можно рассчитать исходя из коэффициентов местного сопротивления. Полученные значения сводят в табличной форме, в которую включаются данные всех участков, причём не только прямые отрезки, но и по несколько фасонных частей. Название каждого элемента заносится в таблицу, там же указываются соответствующие значения и характеристики, по которым определяется коэффициент местного сопротивления. Эти показатели можно найти в соответствующих справочных материалах по подбору оборудования для вентиляционных установок.

При наличии большого количества элементов в системе или при отсутствии определённых значений коэффициентов используется программа, которая позволяет быстро осуществить громоздкие операции и оптимизировать расчёт в целом. Общая величина сопротивления определяется как сумма коэффициентов всех элементов отрезка.

Вычисление потерь давления на местных сопротивлениях

Рассчитав итоговую суммарную величину показателя, переходят к вычислению потерь давления на анализируемых участках. После расчёта всех отрезков основной линии полученные числа суммируют и определяют общее значение сопротивления вентиляционной системы.

Программа расчета противодымной вентиляции Fans 400


fans 400 Программа Fans 400 создана для расчета противодымной вентиляции помещений. С ее помощью можно определить показатели системы удаления дыма из холлов, коридоров и вестибюлей. Программа для расчета противодымной вентиляции помогает подобрать мощность вентиляторов и другого специального оборудования.

Fans 400 создана для инженеров-проектировщиков, пожарных инспекторов и студентов профильных специальностей.

Использование для расчетов противодымной вентиляции не вызовет сложностей у пользователя любого уровня подготовки. Она распространяется бесплатно. Для корректной работы программы к компьютеру необходимо подключить принтер.

Типы вентилирования

Вентиляцию можно разделить на две подгруппы: естественное и принудительное. Схемы могут дополнять друг друга или применяться независимо.

Естественное

В такой схеме движение воздушных масс обеспечивают естественные причины, разности давления внутри и вне здания. Чем выше постройка, тем эффективней работа вентиляции. Такими системами оборудуются все жилые многоквартирные дома, школы, детские сады и др. Но с применением инновационных строительных материалов эта схема устаревает. Борьба за энергетическую эффективность предполагает герметизацию зданий, ограничивая приток. Поэтому естественное вентилирование является частью более сложных схем.

Принудительное

Воздухообмен в этом случае обеспечивает работа силовых установок, которые создают стабильный, эффективный поток, заменяющий воздух рассчитанное количество раз. Вентилирование обеспечивается различным комплектом оборудования.

Приточное

Особенностью такого воздухообмена является нагнетание подготовленного воздуха в помещение. Отвод отработанной смеси проводится по естественным каналам через фрамуги, форточки и др. Эта схема применяется в жилых домах, квартирах и с небольшой модернизацией на промышленных объектах. Конструктивное преимущество оборудования – возможность воздухоподготовки (фильтрация, контроль температуры и влажности). Наши инженеры подготовили проекты, провели расчет приточной вентиляции помещений, онлайн калькулятор может предоставить эту информацию. Калькулятор приточной вентсистемы позволяет, зная тип и площадь объекта, понять примерную стоимость за комплексную систему.

Калькулятор вытяжной вентиляции

Эта система работает по обратному принципу. Воздух в помещение попадает через открытые проемы, а удаляется вытяжным оборудованием, размещенным в «грязных зонах». Его задача – локализировать загрязнение, не давая воздуху распространиться по всему помещению. Подобная схема применяется для оборудования промышленных предприятий, на которых загрязнение происходит в одном или нескольких ограниченных местах. Примером служат сварочные посты.

Эта схема также применяется в частном домостроении. Рекомендованы такие схемы в экологически чистых районах, поскольку невозможно осуществить эффективную воздухоподготовку. В компании проведен расчет вытяжной вентиляции, калькулятор поможет за несколько секунд ознакомиться с ценой для зданий с различным целевым назначением. Калькулятор расчета вытяжной системы вентиляции от компании Авимос позволяет выбрать необходимый тип помещения, площадь и узнать ориентировочную цену на готовое решение.

Приточно-вытяжное

Это самая эффективная схема вентилирования, поскольку приток и вытяжку побуждают работой силовых установок. В результате образуются четко направленные потоки, которые движутся с рассчитанной скоростью. Схема не зависит от природных условий и поддерживает заданные режимы в течение всего года. Эффективная воздухоподготовка позволяет создавать микроклимат во всем здании и в отдельных зонах.помещений поможет Вам определить примерную стоимость на систему вентилирования с монтажом.

Расчет производительности для нагрева воздуха определенного объема

Определяем массовый расход нагреваемого воздуха

G

(кг/ч) =L хр где:

L

— объемное количество нагреваемого воздуха, м.куб/часp — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб

Определяем расход теплоты для нагревания воздуха

Q

(Вт) =G хc х (t кон —t нач)

где:

G

— массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы)t нач — температура воздуха на входе в теплообменник, °Сt кон — температура нагретого воздуха на выходе из теплообменника, °С

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector