Почему возникает потеря давления в трубопроводе и как этого можно избежать

Содержание:

Как узнать мощность: пошаговая инструкция

Наиболее точным способом определить давление водопровода может стать встроенный манометр, — его устанавливают на входе во внутреннюю сеть сразу после запорной арматуры с фильтром.

Если такое оборудование не установлено, то можно изготовить переносной его аналог самостоятельно.

Для того понадобится:

  • манометр до 6 атмосфер;
  • резьбовой удлинитель;
  • переходник (при необходимости);
  • фумлента;
  • разводной ключ.

Порядок работ:

  1. К манометру присоединяют резьбовой удлинитель, на который крепят переходник (при необходимости). Для точности производимых измерений с помощью фумленты достигают герметичности соединений.
  2. От с шланга душа отсоединяют лейку и прикручивают подготовленный ранее манометр, — соединение герметизируют фумлентой.
  3. Полностью открывают кран-буксу душа и снимают показания с манометра.

Этот способ является наиболее точным, однако если требуется срочно узнать давление, а манометра под рукой нет, то можно применить другой, правда, менее точный метод: определение давления по расходу воды.

Порядок проведения измерений:

  1. 3-литровую емкость подставляют под предварительно открытый на полную мощность кран.
  2. Одновременно с этим засекают время на секундомере и фиксируют: за сколько наполнится емкость.
  3. Полученное время сверяют с табличными данными и устанавливают давление.

Таблица: зависимость давления от расхода воды:

Критерий Рейнольдса

Такую зависимость вывел английский физик и инженер Осборн Рейнольдс (1842 — 1912).

Критерий, который помогает ответить на вопрос, есть ли необходимость учитывать вязкость, является число Рейнольдса Re. Оно равно отношению энергии движения элемента текущей жидкости к работе сил внутреннего трения.

Рассмотрим кубический элемент жидкости с длиной ребра n. Кинетическая энергия элемента равна:

Согласно закону Ньютона, сила трения, действующая на элемент жидкости, определяется так:

Работа этой силы при перемещении элемента жидкости на расстояние n составляет

а отношение кинетической энергии элемента жидкости к работе силы трения равно

Сокращаем и получаем:

Re — называется числом Рейнольдса.

Таким образом, Re — это безразмерная величина, которая характеризует относительную роль сил вязкости.

Например, если размеры тела, с которым соприкасаются жидкость или газ, очень малы, то даже при небольшой вязкости Re будет незначительно и силы трения играют преобладающую роль. Наоборот, если размеры тела и скорость велики, то Re >> 1 и даже большая вязкость почти не будет влиять на характер движения.

Однако не всегда большие числа Рейнольдса означают, что вязкость не играет никакой роли. Так, при достижении очень большого (несколько десятков или сотен тысяч) значения числа Re плавное ламинарное (от латинского lamina — «пластинка») течение превращается в турбулентное (от латинского turbulentus — «бурный», «беспорядочный»), сопровождающееся хаотическими, нестационарными движениями жидкости. Этот эффект можно наблюдать, если постепенно открывать водопроводный кран: тонкая струйка течёт обычно плавно, но с увеличением скорости воды плавность течения нарушается. В струе, вытекающей под большим напором, частицы жидкости перемещаются беспорядочно, колеблясь, всё движение сопровождается сильным перемешиванием.

Появление турбулентности весьма существенно увеличивает лобовое сопротивление. В трубопроводе скорость турбулентного потока меньше скорости ламинарного потока при одинаковых перепадах давления. Но не всегда турбулентность плоха. В силу того что перемешивание при турбулентности очень значительно, теплообмен — охлаждение или нагревание агрегатов — происходит существенно интенсивнее; быстрее идёт распространение химических реакций.

Как заглушить трубу с водой под давлением?

Но когда воду нельзя перекрыть, то многие подумают, что сделать это невозможно. Однако это не так.

Обычную заглушку поставить не получится, так как сильный напор не даст возможность даже наживить её на резьбу.

Но если воспользоваться вместо неё обычным водопроводным краном, то всё получится.

Метод заключается в том, чтобы кран, который будет заглушать трубу, перевести в открытый режим, — вода будет проходить сквозь него и тем самым даст возможность его наживить на резьбу трубы. Как только кран-заглушка будет наживлен и закручен на несколько витков, его можно перекрывать.

Перед работами нужно убедиться в том, что ничто не помешает выполнению работ, а также подготовить емкость для набора воды, тряпочную ветошь для уборки (чтоб не протопить соседей).

Этим методом можно воспользоваться даже в случае, если заглушаемая труба будет без резьбы, — тогда на кран-заглушку нужно надеть гибкий шланг, который бы налезал на трубу.

Кран, как и в первом случае, нужно полностью открыть, а шланг одевать на трубу — крепить его нужно на один-два хомута. После этого можно окончательно перекрывать воду.

Обозначение напора в трубопроводе

Традиционно давление измеряют в Паскалях (Па), однако в сфере водоснабжения приняты и другие условные обозначения, — при этом в разных странах они отличаются:

  • В России давление принято измерять в кгс/см². 100 кгс/см² тождествено 980,67 Па.
  • В европейских странах применяют другую условную единицу – бар, который равен 10⁵ Па.
  • В Англии и США используют обозначение psi, что соответствует 6,87 кПа.

Также давление измеряют в технических атмосферах и миллиметрах ртутного столба.

К сведению. Напор воды в 1 бар соответствует 1,02 атмосфер и равнозначно 10-ти метрам водного столба.

Соотношение величин разных обозначений приведено в следующей таблице:

Какая мощность в системе ГВС и ХВС?

Давление воды в многоэтажных домах, подключенных к центральной водопроводной сети, не постоянно.

Оно зависит от таких факторов, как этажность дома или время года, — так в летний сезон, особенно в многоэтажных домах становиться особо ощутима нехватка холодной воды, которая в это время идет на полив придомовых или приусадебных участков.

Муниципальные службы на практике стараются держать уровень на средних показателях в 3-4 атмосферы, правда, не всегда успешно. Минимальные показатели, при котором трубопровод дома может функционировать (и для ХВС, и для ГВС), составляют 0.3 бара на один этаж.

Величина напора горячего и холодного водоснабжения несколько отличается в пользу последнего (допускается разница до 25 %).

Объясняется это просто – холодная вода используется активней, поскольку нужна для функционирования канализации. Поэтому максимальные показатели для ХВС будут 6 атмосфер, а для ГВС – 4.5 атмосферы.

Как выбрать размер трубопровода сжатого воздуха?

Итак, Вам нужно узнать, как подобрать правильный размер трубопроводов сжатого воздуха. Все еще встречаются места, где размер трубы в системе сжатого воздуха слишком мал. Это либо потому, что производство со временем расширилось, и старая система стала слишком маленькой, или просто изначально были установлены неподходящие трубопроводы. В чем проблема со слишком маленькой трубой для сжатого воздуха? Это падение давления. Нужное количество сжатого воздуха попросту не пройде через эту трубу. Результатом будет является перепад давления между началом и концом трубы. Чем плох перепад давления? Это лишние затраты. Если падение давления становится слишком высоким, Вам нужно будет установить компрессор на более высокое давление. Чем оно выше, тем больше электроэнергии (и денег) он будет требовать. Поэтому желательно, чтобы падение давления составляло максимум 0,1 бар.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

ламинарный поток (Re 4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Зависимость скорости от напора

В водоснабжении существует одна весьма важна взаимосвязь – зависимость давления от скорости воды в трубопроводе. Данное свойство подробно описано в физическом законе Бернулли. Подробно рассматривать его мы не будем, но укажем лишь на его суть — при увеличении скорости течения воды её давление в трубе снижается.

Так вышло, что не все сантехнические приборы рассчитаны на эксплуатацию при высоком напоре, в большинстве случаев они ограничены 5-6 атмосферами, — иначе повышенных износ и преждевременный выход из строя.

В центральных магистралях этот показатель значительно выше – может достигать 15 атмосфер, а потому для его снижения при подключении внутренних систем используют трубы меньшего диаметра.

Формула расчета гидравлических потерь давления

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа

Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

h-потеря напора здесь она измеряется в метрах. λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже. L-длина трубопровода измеряется в метрах. D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах. V-скорость потока жидкости. Измеряется [Метр/секунда]. g-ускорение свободного падения равен 9,81 м/с 2

А теперь поговорим о коэффициенте гидравлического трения.

Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.

Напомню эту формулу (она применима только к круглым трубам):

V-Скорость потока жидкости. Измеряется [Метр/секунда]. D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах. ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Здесь Δэ — Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа с .

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться «эквивалентом шероховатости труб» и не как иначе, а то результат будет ошибочный. Эквивалент означает — средняя высота шероховатости.

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Таблица: (Эквивалент шероховатости)

Таблица: (Кинематическая вязкость воды)

А теперь давайте решим задачу:

Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м 3 /с, длина трубы L=900м, температура t=16°С.

Дано: D=500мм=0.5м Q=2 м 3 /с L=900м t=16°С Жидкость: H2O Найти: h-?

Решение: Для начала найдем скорость потока в трубе по формуле:

Сдесь ω — площадь сечения потока. Находится по формуле:

ω=πR 2 =π(D 2 /4)=3.14*(0,5 2 /4)=0,19625 м 2

Далее находим число Рейнольдса по формуле:

Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10 -6 =0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.

Далее завершаем формулой:

h=λ*(L*V 2 )/(D*2*g)=0,01645*(900*10,19 2 )/(0,5*2*9,81)=156,7 м.

Ответ: 156,7 м. = 1,567 МПа.

Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Источник

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Кондиционер с установкой за 19 990 руб.

Использование трубопроводов в системах кондиционирования и вентиляции

В системах кондиционирования теплоноситель перемещается по трубопроводам. Необходимый диаметр труб зависит от расхода теплоносителя.

При движении теплоносителя по трубопроводу происходят потери давления из-за гидравлических сопротивлений: трения и местных сопротивлений. Поэтому для расчета трубопровода используют формулы гидравлики. Принципы гидравлического расчета не зависят от вида теплоносителя, которым может быть вода, пар, хладагенты и т.д.

Наиболее распространенный метод расчета трубопроводов – метод удельных потерь давления. Этот метод состоит в раздельном подсчете потерь давления на трение и на местные сопротивления в каждом участке системы труб.

Потери давления в трубопроводе на трение

Потери давления на преодоление сил трения зависят от плотности и скорости течения теплоносителя, а также параметров трубопровода. Потери на трение Pтр измеряются в кг на кв.м. и рассчитываются по формуле:

Pтр = (x*l/d) * (v*v*y)/2g,

где x – безразмерный коэффициент трения, l – длина трубы в метрах, d – диаметр трубы в метрах, v – скорость течения перемещаемой среды в м/с, y – плотность теплоносителя в кг/куб.м., g – ускорение свободного падения (9,8 м/с2).

Коэффициент трения x определяется материалом и шероховатостью стенок трубы, а также режимом движения жидкости. Различают два режима течения: ламинарное и турбулентное.

Чтобы не рассчитывать каждый раз потери на трение в трубе, составлены таблицы гидравлических потерь в зависимости от диаметра труб и расхода жидкости. Они содержатся в справочниках проектировщика систем кондиционирования. Ниже приведена таблица гидравлического расчета для обыкновенных стальных водогазопроводных труб (ГОСТ 3262-62), по которым движется вода.

Режимы течения жидкости

  1. Ламинарное течениеПотоки жидкости перемещаются в направлении течения, без образования вихрей. Гидравлическое сопротивление трубопровода зависит только от скорости движения теплоносителя. При скоростях теплоносителя, не превышающих 1-2 м/с, можно для расчетов считать течение ламинарным.
  2. Турбулентное течениеПри повышении скорости течения теплоносителя возникает турбулентность течения. Кроме перемещения в направлении потока, струи жидкости завихряются. При этом гидравлическая шероховатость труб повышается, то есть сильно увеличивается сопротивление трения. Поэтому при перемещении теплоносителя по трубопроводу нужно избегать турбулентностей.

Потери давления в трубопроводе на местные сопротивления

При изменении направления и скорости движения теплоносителя в трубопроводе системы кондиционирования возникают дополнительные сопротивления. Они называются местными и происходят в клапанах, отводах и т.п.

Потери давления на местные сопротивления на участке трубопровода рассчитываются по формуле:

Рмест = W* (v*v*y)/2g,

где v – скорость течения перемещаемой среды в м/с, y – плотность теплоносителя в кг/куб.м., g – ускорение свободного падения (9,8 м/с2), W – суммарный коэффициент местных сопротивлений на данном участке. Он определяется опытным путем либо содержится в справочниках.

Потери давления на местные сопротивления Z ищут отдельно для каждого участка сети трубопровода.

  1. Сначала определяют суммарный коэффициент W для участка.
  2. Затем умножают на динамический напор теплоносителя (v*v*y)/2g.

Замечание: при расчете водяных систем можно воспользоваться упрощенной формулой: Рмест = 50W*v*v.

Расчет общих потерь давления

Общие потери давления складываются из действия трения и местных сопротивлений: Р = Ртр + Рмест.

  1. Определяем потери давления на самом нагруженном участке. Обычно это самый удаленный от источника тепло-или холодоснабжения участок трубопровода.
  2. Затем приравниваем потери давления в последующих ответвлениях к потерям на самом нагруженном участке. Допустимо расхождение до 10-15%.
  3. Складывая потери давления частей трубопровода, получим общие потери давления в трубопроводе системы кондиционирования.

Гидравлическое сопротивление

В одной из ранних статей на блоге рассмотрен простой пример расчета трубопровода с параллельными участками с использованием понятия «характеристика сопротивления». В конце статьи я анонсировал: «Можно существенно повысить точность метода…». Под этой фразой подразумевалось учесть зависимость характеристик сопротивления от расхода более точно. В том расчете характеристики сопротивлений выбирались из таблиц по диаметру трубы и по предполагаемому расходу. Полковов Вячеслав Леонидович написал взамен таблиц пользовательские функции в Excel для более точного вычисления гидравлических сопротивлений, которые любезно предоставил для печати. Термины «характеристика сопротивления» и «гидравлическое сопротивление» обозначают одно и то же.

Зависимость скорости от напора

В водоснабжении существует одна весьма важна взаимосвязь – зависимость давления от скорости воды в трубопроводе. Данное свойство подробно описано в физическом законе Бернулли. Подробно рассматривать его мы не будем, но укажем лишь на его суть — при увеличении скорости течения воды её давление в трубе снижается.

Так вышло, что не все сантехнические приборы рассчитаны на эксплуатацию при высоком напоре, в большинстве случаев они ограничены 5-6 атмосферами, — иначе повышенных износ и преждевременный выход из строя.

В центральных магистралях этот показатель значительно выше – может достигать 15 атмосфер, а потому для его снижения при подключении внутренних систем используют трубы меньшего диаметра.

Важно. При уменьшении сечения трубы, увеличивается скорость течения воды, но уменьшается ее давление

Поэтому при хронически низком напоре в квартире следует рассмотреть возможность увеличения диаметра внутреннего трубопровода.

Скорость течения жидкости равна

где q > расчетный расход жидкости, м3/с;

– площадь живого сечения трубы, м2.

Коэффициент сопротивления трения λ определяется в соответствии с регламентами свода правил СП 40-102-2000 «Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов. Общие требования»:

где b – некоторое число подобия режимов течения жидкости; при b > 2 принимается b = 2.

где Re – фактическое число Рейнольдса.

где ν – коэффициент кинематической вязкости жидкости, м²/с. При расчетах холодных водопроводов принимается равным 1,31 · 10-6 м²/с – вязкость воды при температуре +10 °С;

Reкв >- число Рейнольдса, соответствующее началу квадратичной области гидравлических сопротивлений.

где Кэ – гидравлическая шероховатость материала труб, м. Для труб из полимерных материалов принимается Кэ = 0,00002 м, если производитель труб не дает других значений шероховатости.

В тех случаях течения, когда Re ≥ Reкв, расчетное значение параметра b становится равным 2, и формула ( 4 ) существенно упрощается, обращаясь в известную формулу Прандтля:

При Кэ = 0,00002 м квадратичная область сопротивлений наступает при скорости течения воды (ν= 1,31 · 10-6 м²/с), равной 32,75 м/с, что практически недостижимо в коммунальных водопроводах.

Для повседневных расчетов рекомендуются номограммы, а для более точных расчетов – «Таблицы для гидравлических расчетов трубопроводов из полимерных материалов», том 1 «Напорные трубопроводы» (А.Я. Добромыслов, М., изд>во ВНИИМП, 2004 г.).

При расчетах по номограммам результат достигается одним наложением линейки – следует прямой линией соединить точку со значением расчетного диаметра на шкале dр с точкой со значением расчетного расхода на шкале q (л/с), продолжить эту прямую линию до пересечения со шкалами скорости V и удельных потерь напора 1000 i (мм/м). Точки пересечения прямой линии с этими шкалами дают значение V и 1000 i.

Как известно, затраты электроэнергии на перекачку жидкости находятся в прямой пропорциональной зависимости от величины Н (при прочих равных условиях). Подставив выражение ( 3 ) в формулу ( 2 ), нетрудно увидеть, что величина i (а, следовательно и Н) обратнопропорциональна расчетному диаметру dр в пятой степени.

Выше показано, что величина dр зависит от толщины стенки трубы e: чем тоньше стенка, тем выше dр и тем, соответственно, меньше потери напора на трение и затраты электроэнергии.

Если в дальнейшем по каким-либо причинам меняется значение MRS трубы, ее диаметр и толщина стенки (SDR) должны быть пересчитаны.

Следует иметь в виду, что в целом ряде случаев применение труб с MRS 10 взамен труб с MRS 8, тем более труб с MRS 6,3 позволяет на один размер уменьшить диаметр трубопровода. Поэтому в наше время применение полиэтилена РЕ 80 (MRS 8) и PE 100 (MRS 10) взамен полиэтилена РЕ 63 (MRS 6,3) для изготовления труб позволяет не только уменьшить толщину стенки труб, их массу и материалоемкость, но и снизить затраты электроэнергии на перекачку жидкости (при прочих равных условиях).

В последние годы (после 2013) трубы изготовленные из полиэтилена ПЭ80 практически полностью вытеснены из производства трубами изготовленные из полиэтилена марки ПЭ100. Объясняется это тем, что сырье из которого производятся трубы поставляется из-за границы маркой ПЭ100. А еще тем, что полиэтилен 100 марки имеет более прочностные характеристики, благодаря чему, трубы выпускаются с теми же характеристиками, что трубы из ПЭ80, но с более тонкой стенкой, за счет чего увеличивается пропускная способность полиэтиленовых трубопроводов.

Номограмма для определения потерь напора в трубах диаметрами 6 , 100 мм.

Номограмма для определения потерь напора в трубах диаметрами 100 , 1200 мм.

Какая мощность в системе ГВС и ХВС?

Давление воды в многоэтажных домах, подключенных к центральной водопроводной сети, не постоянно.

Оно зависит от таких факторов, как этажность дома или время года, — так в летний сезон, особенно в многоэтажных домах становиться особо ощутима нехватка холодной воды, которая в это время идет на полив придомовых или приусадебных участков.

Муниципальные службы на практике стараются держать уровень на средних показателях в 3-4 атмосферы, правда, не всегда успешно. Минимальные показатели, при котором трубопровод дома может функционировать (и для ХВС, и для ГВС), составляют 0.3 бара на один этаж.

Объясняется это просто – холодная вода используется активней, поскольку нужна для функционирования канализации. Поэтому максимальные показатели для ХВС будут 6 атмосфер, а для ГВС – 4.5 атмосферы.

Расходная характеристика трубопровода модуль расхода

Вспомним
формулу линейных потерь – формулу Дарси
– Вейсбаха:.

Выразим
в этой формуле скорость V
через расход Q
из соотношения

Для
трубопровода определенного диаметра
комплекс величин

с.э

Обоснуем
правомерность введения понятия
среднеэкономической скорости следующими
рассуждениями.

Гидравлическую
систему, например водопроводную, для
пропуска определенного расхода можно
выполнить из труб разного диаметра. При
этом с увеличением диаметра d,
следовательно, уменьшением скорости V
капитальные затраты будут расти, а
эксплуатационные затраты будут
уменьшаться из-за снижения гидравлических
потерь. Скорость, при которой суммарные
затраты будут иметь минимальное значение,
будем называть среднеэкономической
скоростью Vс.э
= 0,8…1,3 м/с (рис.6.1).

рис.6.1

Тогда
формула линейных потерь (6.1) примет вид

,

где
К – расходная характеристика трубопровода
(модуль расхода), зависит от материала
трубопровода, диаметра и расхода. берется
из таблиц.

ПОТЕРИ НАПОРА ПРИ ВНЕЗАПНОМ РАСШИРЕНИИ.

1. Основное содержание работы.

Задачей работы является экспериментальное изучение закономерностей потерь напора и распределения давлений по длине трубы, определяется коэффициент местного сопротивления и строится участок графика его зависимости от числа Рейнольдса. Основная формула, связывающая величину потерь напора с параметрами потока и характерными размерами:

где

где

Следует подчеркнуть, что формула (2) получена из теоретической схемы, в которой игнорируются потери трения, а также предполагается равномерное распределение скоростей в сечениях труб. Поэтому коэффициент оказывается независимым от числа Рейнольдса, а сама формула отражает лишь так называемый квадратичный участок кривой, где в реальных условиях влияние числа Рейнольдса отсутствует.

Существует по крайней мере два подхода к экспериментальному определению коэффициента потерь при внезапном расширении. Первый состоит в его определении по измерениям давлений и скоростей в двух контрольных сечениях. При таком способе учитывается не только потери на внезапном расширении, но и потери трения на контрольном участке. Согласно другому подходу, из полного коэффициента исключаются потери на трение, что можно сделать с помощью построения линии энергии по длине участка расширения путем вычисления потерь на трение по формуле равномерного движения или по данным опытов на специально оборудованной установке.

2. Порядок проведения измерений.

Работа выполняется на модуле М2 (рис. 4). Для выполнения работы необходимо:

— включить насос Н1 на панели управления;

— установить необходимый расход с помощью вентилей В2, В1 и выходного вентиля модуля В4.

Наблюдая за столбиками воды в пьезометрических трубках, убедиться, что достигнут установившийся режим течения и произвести измерения:

— расхода воды по ротаметрам;

После занесения данных измерений в таблицу изменить расход с помощью вентиля В4 и после достижения установившегося режима повторить все измерения. Для надежной серии опытов рекомендуется произвести их не менее, чем для трех расходов.

3. Обработка опытных данных.

При определении коэффициента местного сопротивления (в данном случае внезапного расширения) необходимо иметь в виду, что за местным сопротивлением, где поток претерпевает значительную деформацию, лежит достаточно протяженный «участок стабилизации», на котором существуют крупные вихри с возвратными течениями. Поэтому экспериментальный коэффициент местного сопротивления должен учитывать полные потери на участке стабилизации, а значит должен явно зависеть от числа Рейнольдса. Совпадение с теоретической формулой Борда можно ожидать только при весьма больших числах Рейнольдса.

Расчетными соотношениями для определения коэффициента местного сопротивления по экспериментальным данным являются следующие. Применительно к рисунку, из уравнения Бернулли для сечения 1 и 2 следует

где — искомые потери на внезапном расширении. Здесь сечение 2 выбирается на расстоянии, достаточном для расширения потока на все сечение S2. Отнеся потери к скоростному напору

Разности пьезометрических напоров

Измерив пьезометрами давления во всех точках их подключения, можно построить пьезометрическую линию вдоль трубы, а также линию энергии. Студентам рекомендуется объяснить физическую сущность этих графиков, а также обозначить на них потери напора в местном сопротивлении.

Модуль М2 «Потери напора при внезапном расширении»

РАБОТА №6.

Последнее изменение этой страницы: 2016-12-29; Нарушение авторского права страницы

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector